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What we have so far: Wright-Fisher/Moran models

In time units of Ne generations, p = proportion a-alleles

I (Forwards time) The Wright-Fisher diffusion (with and
without selection)

dpt = −spt(1− pt)dt+
√
pt(1− pt)dWt;

I (Backwards time) The Kingman coalescent/ ASG

nt 7→ nt − 1 at rate

(
nt
2

)
, nt 7→ nt + 1 at rate snt;

I Sampling probabilities

E[p(t)n(0)] = E[p(0)n(t)]

Stronger result holds. Kingman coalescent really describes
genealogy of random sample from (neutral) population.



Adding spatial structure: subdivided populations

Population subdivided into demes = islands = colonies

I Vertices of graph, i ∈ I;

I i ∼ j if i, j neighbours

I Ni = population size in deme i

Structured Wright-Fisher model
Reproduction in discrete generations

I neutral Wright-Fisher within each deme

I proportion mij of individuals in deme i migrate to deme j

Ni

∑
j∼i

mij =
∑
j∼i

Njmji



Genealogy of structured Wright-Fisher model

1. Two lineages sampled from deme i
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Scaling limit: the structured coalescent

I Ni = O(N) (large) I mij = O(1/N)

P
[
simultaneous migration and coalescence

]
= O(1/N2)

P
[
simultaneous or multiple mergers

]
= O(1/N2)

P
[
single lineage at i migrates

]
=
∑
j∼i

mjiNj

Ni
= O(1/N)

The structured coalescent n = (ni)i∈I :

I
{
ni 7→ ni − 1
nj 7→ nj + 1

at rate ni
Ne(j)
Ne(i)

mji

I ni 7→ ni − 1 at rate 1
2Ne(i)

ni (ni − 1)

Ancestral lineages
drawn into more
populous demes
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Forwards in time? Ni

∑
j∼imij =

∑
j∼imjiNj , mij = O(1/N)

Alleles a, A. pi(t) = proportion of type a in deme i at time t
∆pi change across single generation

E
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1
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(
pi(1−pi)+O(1/N)

)
Cov
(
∆pi,∆pj

)
= O(1/N2)

As N →∞ recover a system of diffusions coupled through
migration
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Kimura’s stepping stone model
∑

j Ne(i)mij =
∑

j Ne(j)mji

dpi =
∑
j

Ne(j)

Ne(i)
mji(pj−pi)dt+

√
1

Ne(i)
pi(1− pi)dWi

{Wi}i∈I independent Brownian motions

System of W-F diffusions coupled through migration

The structured coalescent n:

I
{
ni 7→ ni − 1
nj 7→ nj + 1

at rate ni
Ne(j)
Ne(i)

mji

I ni 7→ ni − 1 at rate 1
2Ne(i)

ni (ni − 1)
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Duality for simplicity Ni ≡ Ne

dpi =
∑

jmji(pj − pi)dt+
√

1
Ne
pi(1− pi)dWi pn :=

∏
i∈I p

ni
i .

dpn =
∑
i

nip
n−ei

∑
j

mji(pj − pi)dt

+
∑
i

1

Ne

ni(ni − 1)

2
pn−2eipi(1− pi)dt+ martingale term

=
∑

ni
∑
j

mji

(
pn+ej−ei − pn

)
dt

+
∑
i

1

Ne

(
ni
2

)(
pn−ei − pn

)
dt+ martingale term

n 7→ n+ ej − ei at rate nimji

n 7→ n− ei at rate 1
Ne

(
ni
2

)
d

du
E[pnt−u

u
] = 0

E
[
pn0
t

]
= E

[
pnt
0

]
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Interpretation

E
[
pn0
t

]
= E

[
pnt
0

]
.

I Sample ni(0) individuals from deme i,
∑

i ni(0) <∞,

I Probability all type a is E
[
p
nt
0

]

Example Suppose I = Z2

For any finite sample, eventually nt is a singleton, so all individuals
in the sample are of the same type.

Need to account for mutation in our model
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Adding mutation

Simplest example:

I Infinitely many alleles model of mutation: each individual in
each generation, independently, with small probability µ
mutates to a type never before seen in the population

I Probability of identity by descent of two individuals, F ,
= probability no mutation since most recent common ancestor
(MRCA)

I Equivalently F = (1− 2µ)T ≈ exp(−2µT ) is the Laplace
transform of the distribution of the time to the MRCA.

The neutral mutation rate dictates the timescales over which we
can reconstruct information about genealogies.



Isolation by distance

In a population in which individuals typically migrate to
geographically close subpopulations, and new mutations
continuously accumulate, P[two individuals in same allelic state]
declines with increasing separation.

Isolation by distance (Wright 1943)

In Z with nearest neighbour migration there is an explicit
expression for the probability of identity. It declines exponentially
with distance. But the exact formula is very special.
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Probability of identity in subdivided population

Population on Z2, N individuals per deme, discrete generations

I Reproduction according to Wright-Fisher model in each deme;

I Proportion g1(x− y) of offspring in deme x migrate to deme
y.

T= time to MRCA of sample of size two

F (x) = Ex[(1− 2µ)T ]

(x vector in Z2)

ψt(x) = Px[T = t],

ψ1(x) =
G1(x)

N
, G1(x) =

∫
g1(x, z)g1(0, z)dz.



Calculating F (x)

If t > 1, partition over location immediate ancestors

ψt(x) =
∑
y

G1(x− y)ψt−1(y)− 1

N
G1(x)ψt−1(0).

Then

(∗) ψt(x) =
1

N

(
Gt(x)−

t−1∑
τ=1

Gt−τ (x)ψτ (0)

)

G̃(z, x) =
∑∞

t=1Gt(x)zt, discrete Laplace transform of G

Write φ(z, x) = Ex[zT ],

(†) φ(z, x) =
1

N
G̃(z, x)

(
1− φ(z, 0)

)
(convolution → product under LT)
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Calculating F (x)

φ(z, x) = Ex[zT ],

(†) φ(z, x) =
1

N
G̃(z, x)

(
1− φ(z, 0)

)
Set x = 0 in (†),

φ(z, 0) =
1

N
G̃(z, 0)

(
1− φ(z, 0)

)
; φ(z, 0) =

G̃(z, 0)

N + G̃(z, 0)

Substitute back in (†)

φ(z, x) =
G̃(z, x)

N + G̃(z, 0)

If g1 approximately Gaussian

1

N
G̃(z, 0) =

1

2N
log
( 1√

1− z

)
;

1

N
G̃(z, x) =

1

N
K0

( |x|
σ

√
1− z

)
N = 2Nπσ2 is Wright’s neighbourhood size, K0 modified Bessel
function of second kind of degree zero.
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Calculating F (x)

Have shown

φ(z, x) ≈
K0

(
|x|
σ

√
1− z

)
N − log(

√
1− z)

DIVERGES as x→ 0

Assume solution constant over small scale κ, use K0(y) ≈ − log y
as y ↓ 0, set z = 1− 2µ ≈ exp(−2µ) and substitute:

(∗) F (x) = Ex[e−2µT ] ≈
K0

(
|x|/lµ

)
N + log(lµ/κ)

|x| > κ

where lµ = σ/2µ,

E0[e
−2µT ] ≈ log(lµ/κ)

N + log(lµ/κ)
.

(∗) is known as the Wright-Malécot formula.
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Calculating F (x)

Have shown

φ(z, x) ≈
K0

(
|x|
σ

√
1− z

)
N − log(

√
1− z)

DIVERGES as x→ 0

Assume solution constant over small scale κ, use K0(y) ≈ − log y
as y ↓ 0, set z = 1− 2µ ≈ exp(−2µ) and substitute:

(∗) F (x) = Ex[e−2µT ] ≈
K0

(
|x|/lµ

)
N + log(lµ/κ)

|x| > κ

where lµ = σ/2µ,

E0[e
−2µT ] ≈ log(lµ/κ)

N + log(lµ/κ)
.

(∗) is known as the Wright-Malécot formula.



Malécot-Wright approximation for the stepping stone
model

F = P[identity]

1 2 3 4 5 6 7

0.5

1

F



The unreasonable effectiveness of the Kingman coalescent

Common to use Kingman coalescent even for natural populations
Replace census population size by an effective population size

Ne = number of individuals needed in an idealised population for
specified quantity of interest (eg rate of change of genetic
diversity) to be the same as in the real population.

For Buri’s data we saw Ne = N/σ2 where σ2 was variance in
number of offspring of a single fly.

Typically, Ne < N , possibly � N .

Why does it work?
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Sampling uniformly from the torus T(L) ⊂ Z2

T = time to MRCA two individuals sampled uniformly from T(L)

I T0 = time to first come into same deme

I t0 = time to coalesce started from same
deme

T = T0 + t0

Xt = distance between two lineages (for convenience continuous
time r.w.) Uniform stationary distribution Pπ[Xt = 0] = 1/L2

Eπ
[
time up to L2 lineages in same colony

]
=

∫ L2

0
Pπ[Xt = 0]dt = 1

If X0 = 0, local CLT =⇒ P0[Xt = 0] ≈ 1/(4πσ2t)

E0

[
time up to L2 lineages in same colony

]
=

∫ L2

0
P0[Xt = 0]dt

≈ log(L2)

4πσ2
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The distribution of T0

1 =

∫ L2

0
Pπ[Xt = 0]dt =

∫ L2

0
Pπ[T0 = s]

∫ L2−s

0
P0[Xt = 0]dtds

≈ Pπ[T0 ≤ L2]
log(L2)

4πσ2

So Pπ[T0 ≤ L2] ≈ 2πσ2

logL . ; T0 = O(L2 logL)

τ := T0/(L
2 logL),

Random walk to equilibriates over T(L)
in o(L2 logL) Cox & Durrett (2002)

P[τ > s+ t|τ > s] = P[τ > t] as L→∞

i.e (asymptotically) τ has exponential distribution

Pπ
[
T0 >

L2 logL

2πσ2
t
]
→ e−t
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The distribution of t0

P0

[
lineages coalesce before jump apart

]
=

1
N

1
N + 2m

R0 = return time

E0[t0] = N +
( 1
N + 2m

1
N

− 1
)
E[R0]

Kac’s Lemma: E[R0] = 1/(2mπ(0)) = L2/(2m)

E[t0] = N(L2 + 1)

I Unless N grows with L, T0 dominates
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Genealogy

I Sample of size k: when first pair of lineages coalesces,
positions remaining lineages uncorrelated with their starting
points.

I On timescale L2 logL genealogy uniform sample from T(L)→
Kingman coalescent as L→∞ Zähle, Cox, Durrett (2005)

Census population size grows with L2 so this does not explain the
timescale seen in real populations
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