

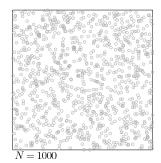
Some mathematical models from population genetics

Alison Etheridge University of Oxford

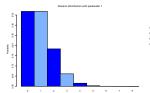
with thanks to numerous collaborators

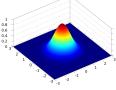
CMAP5, June 2023

Recap: the Wright-Malécot model



- Individuals are scattered across a two-dimensional space.
- In each generation, each individual produces a Poisson number of offspring (average one).
- Offspring are scattered in a Gaussian distribution around their parent.





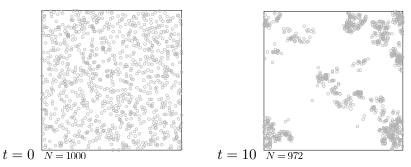
Mitch Gooding Jerome Kelleher

Modelling populations in which population density changes

Recall the pain in the torus.

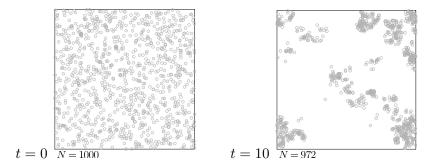
Modelling populations in which population density changes

Recall the pain in the torus.



Modelling populations in which population density changes

Recall the pain in the torus.



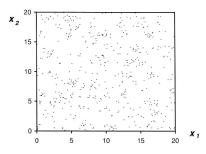
▶ In d = 1, 2, independent reproduction \implies clumping;

Modifying Wright-Malécot (à la Bolker-Pacala)

Think of population as a (purely atomic) measure X.

Expected number offspring of individual at x in generation t, $\left(1 + \varepsilon(M - \langle h(x, y), X(t, y) \rangle)\right)_+$ ($\langle \cdot, \cdot \rangle$ integration)

(Small in crowded regions, big in sparsely populated regions)



For suitable M, h and dispersal kernel, the population is stable.

Roughly, individuals must disperse sufficiently quickly relative to the range of interaction induced by density dependent regulation.

Sometimes easier to consider scaling limits.

For our modified Wright-Malécot model, can obtain (stochastic non-local) Fisher-KPP equation in the limit of high population intensity.

Informally:

 $dX_s(x) = \sigma \Delta X_s(x) ds + (M - \langle h(x, y), X_s(y) \rangle) X_s(x) ds$ $+ \sqrt{\gamma X_s(x)} W(ds, dx)$

Sometimes easier to consider scaling limits.

For our modified Wright-Malécot model, can obtain (stochastic non-local) Fisher-KPP equation in the limit of high population intensity.

More rigorously

$$\begin{split} \langle \phi, X_t \rangle - \langle \phi, X_0 \rangle - \int_0^t \langle \sigma \Delta \phi, X_s \rangle ds \\ &- \int_0^t \langle \Big(M - \langle h(x, y), X_s(dy) \rangle) \Big) \phi, X_s(dx) \rangle ds \end{split}$$

is a martingale with quadratic variation

$$\int_0^t \langle \gamma \phi^2, X_s \rangle ds.$$

Survival/extinction

d = 2, X_0 Lebesgue

 $h(x,y)=h(\|x-y\|).$ Define X^{θ} by

$$\langle \phi, X_t^{\theta} \rangle = \langle \frac{1}{\theta^2} \phi\left(\frac{x}{\theta}\right), X_{\theta^2 t}(dx) \rangle$$

and $h^{\theta}(r) = \theta^2 h(\theta r).$

$$\begin{split} \langle \phi, X_t^{\theta} \rangle - \langle \phi, X_0^{\theta} \rangle - \int_0^t \langle \sigma \Delta \phi, X_s^{\theta} \rangle ds \\ &- \int_0^t \langle \theta^2 \Big(M - \langle h^{\theta} (\|x - y\|), X_s^{\theta} (dy) \rangle \Big) \phi, X_s^{\theta} (dx) \rangle ds \end{split}$$

is a martingale with quadratic variation

$$\int_0^t \langle \gamma \phi^2, X_s^\theta \rangle ds.$$

Survival/extinction

d = 2, X_0 Lebesgue

h(x,y) = h(||x - y||). Define X^{θ} by

$$\langle \phi, X_t^{\theta} \rangle = \langle \frac{1}{\theta^2} \phi\left(\frac{x}{\theta}\right), X_{\theta^2 t}(dx) \rangle$$

and $h^{\theta}(r) = \theta^2 h(\theta r)$.

$$\begin{split} \langle \phi, X_t^{\theta} \rangle - \langle \phi, X_0^{\theta} \rangle - \int_0^t \langle \sigma \Delta \phi, X_s^{\theta} \rangle ds \\ &- \int_0^t \langle \theta^2 \Big(M - \langle h^{\theta} (\|x - y\|), X_s^{\theta} (dy) \rangle \Big) \phi, X_s^{\theta} (dx) \rangle ds \end{split}$$

is a martingale with quadratic variation

$$\int_0^t \langle \gamma \phi^2, X_s^\theta \rangle ds.$$

If $r^2h(r) \to \infty$ as $r \to \infty$ expect extinction.

Ancestral lineages?

The lineage of a bit of modern genome is

 $L_t = ($ location of the genetic ancestor at time t ago)

Key quantity, effective dispersal rate σ_e of ancestral lineages.

Sample individual from the population in steady state.

- Wright-Malécot assumed ancestry described by random walk with jumps determined by the forwards in time Gaussian dispersion kernel. Over large spatial and temporal scales approximately Brownian motion;
- (Numerically) in modified model, over large spatial and temporal scales approximately Brownian motion, but with *larger* variance than suggested by forwards in time kernel.

Compare to stepping stone model.

Is this behaviour generic?

Some problems with models so far

Stepping stone model: subdivided population, population size in each deme exogenously specified;

Some problems with models so far

- Stepping stone model: subdivided population, population size in each deme exogenously specified;
- Wright-Malécot model: inconsistent assumptions, clumping/extinction (the pain in the torus);

Some problems with models so far

- Stepping stone model: subdivided population, population size in each deme exogenously specified;
- Wright-Malécot model: inconsistent assumptions, clumping/extinction (the pain in the torus);
- Wright-Malécot with local regulation: overcomes clumping, but no known expressions for ancestral lineages;

The world is not homogeneous

How we model it

How we model it

What are we missing?

- $\eta(x)=$ 'population density at x'
 - ► A juvenile is born

- $\eta(x) =$ 'population density at x'
 - A juvenile is born per capita rate $\gamma(x, \eta(x))$

- $\eta(x) =$ 'population density at x'
 - A juvenile is born per capita rate $\gamma(x, \eta(x))$
 - Dispersal

- $\eta(x) =$ 'population density at x'
 - A juvenile is born per capita rate $\gamma(x, \eta(x))$
 - Dispersal

- $\eta(x)$ = 'population density at x'
 - A juvenile is born per capita rate $\gamma(x, \eta(x))$
 - **•** Dispersal distribution q(x, dy) (Gaussian)

- A juvenile is born per capita rate $\gamma(x, \eta(x))$
- **•** Dispersal distribution q(x, dy) (Gaussian)
- Establishment

- A juvenile is born per capita rate $\gamma(x, \eta(x))$
- **•** Dispersal distribution q(x, dy) (Gaussian)
- Establishment probability $r(y, \eta(y))$

- A juvenile is born per capita rate $\gamma(x, \eta(x))$
- **•** Dispersal distribution q(x, dy) (Gaussian)
- Establishment probability $r(y, \eta(y))$
- Death of mature individuals

- A juvenile is born per capita rate $\gamma(x, \eta(x))$
- **•** Dispersal distribution q(x, dy) (Gaussian)
- Establishment probability $r(y, \eta(y))$
- Death of mature individuals rate $\mu(x, \eta(x))$

- A juvenile is born per capita rate $\gamma(x, \eta(x))$
- **•** Dispersal distribution q(x, dy) (Gaussian)
- Establishment probability $r(y, \eta(y))$
- Death of mature individuals rate $\mu(x, \eta(x))$

Assume maturity reached instantly We only track mature individuals

A cautionary tale

Simulations by Gilia Patterson, using SLiM

- death: $\mu = 0.3$ per generation
- establishment: r = 0.7
- \blacktriangleright dispersal: Gaussian with SD σ
- local density: in circles radius $\epsilon = 1$

• reproduction with
$$K = 2$$
, $\lambda = 3$,

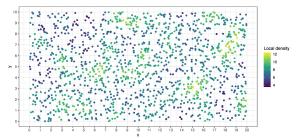
$$\gamma = \frac{\lambda}{1 + (\text{local density})/K}$$

non-spatial equilibrium density:

$$K\Big(\frac{\lambda}{1-r}-1\Big)$$

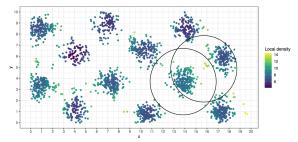
Large dispersal distance

- dispersal distance $\sigma = 3$
- interaction distance $\epsilon = 1$
- mean number offspring $\propto (1 + (\text{density})/K)^{-1}$



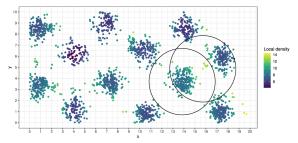
Small dispersal distance

- dispersal distance $\sigma = 0.2$
- interaction distance $\epsilon = 1$
- mean number offspring $\propto \left(1 + (\mathsf{density})/K
 ight)^{-1}$



Small dispersal distance

- dispersal distance $\sigma = 0.2$
- ▶ interaction distance ε = 1
- mean number offspring $\propto \left(1 + (\text{density})/K\right)^{-1}$



Low dispersal distance compared to distance over which negatively influenced by presence of neighbours can lead to strong clumping. c.f., e.g., Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, N Britton, SIAM J. Appl. Math. 1990.

Characterising the model

Birth-death process with dynamics:

- A juvenile is born per capita rate $\gamma(x, \eta(x))$
- Dispersal distribution q(x, dy) (Gaussian)
- (Instantaneous) establishment probability $r(y, \eta(y))$
- Death of mature individuals rate $\mu(x, \eta(x))$

Characterising the model

Birth-death process with dynamics:

- A juvenile is born per capita rate $\gamma(x, \eta(x))$
- Dispersal distribution q(x, dy) (Gaussian)
- (Instantaneous) establishment probability $r(y, \eta(y))$
- Death of mature individuals rate $\mu(x, \eta(x))$

Think of population as a point measure, with atoms of mass 1/N. Write

$$\langle f, \eta \rangle = \frac{1}{N} \sum f(X_i) = \int f(x) \eta(dx)$$

Unpacking the notation:

$$\gamma(x,\eta(x)) = \gamma(x,\rho_{\gamma}*\eta(x)); \qquad
ho_{\gamma}*\eta(x) = \int
ho_{\gamma}(x-y)\eta(dy)$$

Characterising the model

Birth-death process with dynamics:

- A juvenile is born per capita rate $\gamma(x, \eta(x))$
- Dispersal distribution q(x, dy) (Gaussian)
- (Instantaneous) establishment probability $r(y, \eta(y))$
- Death of mature individuals rate $\mu(x, \eta(x))$

Think of population as a point measure, with atoms of mass 1/N. Write

$$\langle f, \eta \rangle = \frac{1}{N} \sum f(X_i) = \int f(x) \eta(dx)$$

Unpacking the notation:

$$\gamma(x,\eta(x)) = \gamma(x,\rho_{\gamma}*\eta(x)); \qquad \rho_{\gamma}*\eta(x) = \int \rho_{\gamma}(x-y)\eta(dy)$$

 ho_r need not be the same as ho_γ

Scaling the model

Parameters $N,\,\theta$

Birth-death process with dynamics:

- A juvenile is born per capita rate $\theta \gamma(x, \eta(x))$
- Dispersal distribution q_θ(x, dz) (Gaussian mean and variance order 1/θ))
- (Instantaneous) establishment probability $r(z, \eta(z))$
- ▶ Death of mature individuals rate $\mu_{\theta}(x, \eta(x))$

Scaling the model

Parameters $N\text{, }\theta$

Birth-death process with dynamics:

- A juvenile is born per capita rate $\theta \gamma(x, \eta(x))$
- Dispersal distribution q_θ(x, dz) (Gaussian mean and variance order 1/θ))
- (Instantaneous) establishment probability $r(z, \eta(z))$
- Death of mature individuals rate $\mu_{\theta}(x, \eta(x))$

Assume:

Typically $\mathcal{B} = \Delta$

$$\int \theta \Big(r(z,\eta) f(z) - r(x,\eta) f(x) \Big) q_{\theta}(x,dz) \quad \stackrel{\theta \to \infty}{\longrightarrow} \quad \mathcal{B} \big(r(\cdot,\eta) f(\cdot) \big)(x)$$

Scaling the model

Parameters $N\text{, }\theta$

Birth-death process with dynamics:

- A juvenile is born per capita rate $\theta \gamma(x, \eta(x))$
- Dispersal distribution q_θ(x, dz) (Gaussian mean and variance order 1/θ))
- \blacktriangleright (Instantaneous) establishment probability $r(z,\eta(z))$
- Death of mature individuals rate $\mu_{\theta}(x, \eta(x))$

Assume:

Typically
$$\mathcal{B} = \Delta$$

$$\int \theta \Big(r(z,\eta)f(z) - r(x,\eta)f(x) \Big) q_{\theta}(x,dz) \stackrel{\theta \to \infty}{\longrightarrow} \mathcal{B} \big(r(\cdot,\eta)f(\cdot) \big)(x)$$
$$\theta \Big(r(x,\eta)\gamma(x,\eta) - \mu_{\theta}(x,\eta) \Big) = F(x,\eta)$$

- Individual at x gives birth to single mature offspring at z rate $\theta \gamma(x, \eta) r(z, \eta) q_{\theta}(x, dz)$ increment $\langle f, \eta \rangle = \frac{1}{N} f(z)$
- ▶ Individual at x dies rate $\theta \mu_{\theta}(x, \eta)$ increment $\langle f, \eta \rangle = -\frac{1}{N}f(x)$

- Individual at x gives birth to single mature offspring at z rate $\theta \gamma(x, \eta) r(z, \eta) q_{\theta}(x, dz)$ increment $\langle f, \eta \rangle = \frac{1}{N} f(z)$
- ▶ Individual at x dies rate $\theta \mu_{\theta}(x, \eta)$ increment $\langle f, \eta \rangle = -\frac{1}{N}f(x)$

$$= \lim_{\delta t \downarrow 0} \frac{1}{\delta t} \mathbb{E} \Big[\langle f, \eta_{\delta t} \rangle - \langle f, \eta \rangle \Big| \eta_0 = \eta \Big]$$

= $\theta \int \int f(z) r(z, \eta) q_{\theta}(x, dz) \gamma(x, \eta) \eta(dx) - \theta \int f(x) \mu_{\theta}(x, \eta) \eta(dx).$

- Individual at x gives birth to single mature offspring at z rate $\theta \gamma(x, \eta) r(z, \eta) q_{\theta}(x, dz)$ increment $\langle f, \eta \rangle = \frac{1}{N} f(z)$
- ▶ Individual at x dies rate $\theta \mu_{\theta}(x, \eta)$ increment $\langle f, \eta \rangle = -\frac{1}{N} f(x)$

$$= \lim_{\delta t \downarrow 0} \frac{1}{\delta t} \mathbb{E} \Big[\langle f, \eta_{\delta t} \rangle - \langle f, \eta \rangle \Big| \eta_0 = \eta \Big] \int q_\theta(x, dz) = 1$$
$$= \theta \int \int f(z) r(z, \eta) q_\theta(x, dz) \gamma(x, \eta) \eta(dx) - \theta \int f(x) \mu_\theta(x, \eta) \eta(dx).$$

$$= \int \left(\int \theta \left(f(z)r(z,\eta) - f(x)r(x,\eta) \right) q_{\theta}(x,dz) \right) \gamma(x,\eta)\eta(dx) \\ + \int \int f(x)\theta \Big(r(x,\eta)\gamma(x,\eta) - \mu_{\theta}(x,\eta) \Big) \eta(dx).$$

- Individual at x gives birth to single mature offspring at z rate $\theta \gamma(x, \eta) r(z, \eta) q_{\theta}(x, dz)$ increment $\langle f, \eta \rangle = \frac{1}{N} f(z)$
- ▶ Individual at x dies rate $\theta \mu_{\theta}(x, \eta)$ increment $\langle f, \eta \rangle = -\frac{1}{N}f(x)$

$$= \lim_{\delta t \downarrow 0} \frac{1}{\delta t} \mathbb{E} \Big[\langle f, \eta_{\delta t} \rangle - \langle f, \eta \rangle \Big| \eta_0 = \eta \Big] \int q_\theta(x, dz) = 1$$
$$= \theta \int \int f(z) r(z, \eta) q_\theta(x, dz) \gamma(x, \eta) \eta(dx) - \theta \int f(x) \mu_\theta(x, \eta) \eta(dx).$$

$$= \int \left(\int \theta \left(f(z)r(z,\eta) - f(x)r(x,\eta) \right) q_{\theta}(x,dz) \right) \gamma(x,\eta)\eta(dx) \\ + \int \int f(x)\theta \Big(r(x,\eta)\gamma(x,\eta) - \mu_{\theta}(x,\eta) \Big) \eta(dx).$$

$$\stackrel{\theta \to \infty}{\longrightarrow} \quad \int \gamma(x,\eta) \mathcal{B}\big(f(\cdot)r(\cdot,\eta)\big)(x)\eta(dx) + \int f(x)F(x,\eta)\eta(dx)$$

- ► Individual at x gives birth to single mature offspring at z rate $\theta\gamma(x,\eta)r(z,\eta)q_{\theta}(x,dz)$ increment $\langle f,\eta\rangle = \frac{1}{N}f(z)$
- ▶ Individual at x dies rate $\theta \mu_{\theta}(x, \eta)$ increment $\langle f, \eta \rangle = -\frac{1}{N}f(x)$

- ► Individual at x gives birth to single mature offspring at z rate $\theta\gamma(x,\eta)r(z,\eta)q_{\theta}(x,dz)$ increment $\langle f,\eta\rangle = \frac{1}{N}f(z)$
- ▶ Individual at x dies rate $\theta \mu_{\theta}(x, \eta)$ increment $\langle f, \eta \rangle = -\frac{1}{N}f(x)$

$$N\theta \left\{ \left\langle \gamma(x,\eta) \int \frac{1}{N^2} f^2(z) r(z,\eta) q_\theta(x,dz), \eta(dx) \right\rangle + \left\langle \frac{1}{N^2} f^2(x) \mu_\theta(x,\eta), \eta(dx) \right\rangle \right\}$$
$$= \frac{\theta}{N} \left\langle \gamma(x,\eta) \int f^2(z) r(z,\eta) q_\theta(x,dz) + f^2(x) \mu_\theta(x,\eta), \eta(dx) \right\rangle$$

- ► Individual at x gives birth to single mature offspring at z rate $\theta\gamma(x,\eta)r(z,\eta)q_{\theta}(x,dz)$ increment $\langle f,\eta\rangle = \frac{1}{N}f(z)$
- ▶ Individual at x dies rate $\theta \mu_{\theta}(x, \eta)$ increment $\langle f, \eta \rangle = -\frac{1}{N}f(x)$

$$\begin{split} N\theta\Big\{\Big\langle\gamma(x,\eta)\int\frac{1}{N^2}f^2(z)r(z,\eta)q_\theta(x,dz),\eta(dx)\Big\rangle\\ &+\Big\langle\frac{1}{N^2}f^2(x)\mu_\theta(x,\eta),\eta(dx)\Big\rangle\Big\}\\ &=\frac{\theta}{N}\Big\langle\gamma(x,\eta)\int f^2(z)r(z,\eta)q_\theta(x,dz)+f^2(x)\mu_\theta(x,\eta),\eta(dx)\Big\rangle\\ &\int f^2(z)r(z,\eta)q_\theta(x,dz)\to f^2(x)r(x,\eta), \quad \mu_\theta=r\gamma-\frac{1}{\theta}F\to r\gamma\\ &\stackrel{\theta\to\infty}{\longrightarrow}\quad \frac{\theta}{N}\Big\langle 2r(x,\eta)\gamma(x,\eta)f^2(x),\eta(dx)\Big\rangle \end{split}$$

- ► Individual at x gives birth to single mature offspring at z rate $\theta\gamma(x,\eta)r(z,\eta)q_{\theta}(x,dz)$ increment $\langle f,\eta\rangle = \frac{1}{N}f(z)$
- ▶ Individual at x dies rate $\theta \mu_{\theta}(x, \eta)$ increment $\langle f, \eta \rangle = -\frac{1}{N}f(x)$

$$\begin{split} N\theta\Big\{\Big\langle\gamma(x,\eta)\int\frac{1}{N^2}f^2(z)r(z,\eta)q_\theta(x,dz),\eta(dx)\Big\rangle\\ &+\Big\langle\frac{1}{N^2}f^2(x)\mu_\theta(x,\eta),\eta(dx)\Big\rangle\Big\}\\ &=\frac{\theta}{N}\Big\langle\gamma(x,\eta)\int f^2(z)r(z,\eta)q_\theta(x,dz)+f^2(x)\mu_\theta(x,\eta),\eta(dx)\Big\rangle\\ &\int f^2(z)r(z,\eta)q_\theta(x,dz)\to f^2(x)r(x,\eta), \quad \mu_\theta=r\gamma-\frac{1}{\theta}F\to r\gamma\\ &\stackrel{\theta\to\infty}{\longrightarrow}\quad \frac{\theta}{N}\big\langle2r(x,\eta)\gamma(x,\eta)f^2(x),\eta(dx)\Big\rangle \quad \alpha:=\lim\frac{\theta}{N}\end{split}$$

Martingale characterisation of limit

$$\langle f(x), \eta_t(dx) \rangle - \langle f(x), \eta_0(dx) \rangle - \int_0^t \langle \gamma(x, \eta_s) \mathcal{B}(f(\cdot)r(\cdot, \eta_s))(x) + F(x, \eta_s)f(x), \eta_s(dx) \rangle ds$$

is a martingale, $M_f(\cdot)$, with

$$\langle M_f \rangle_t = \alpha \int_0^t \left\langle 2r(x,\eta_s)\gamma(x,\eta_s)f^2(x),\eta_s(x) \right\rangle ds$$

Martingale characterisation of limit

$$\langle f(x), \eta_t(dx) \rangle - \langle f(x), \eta_0(dx) \rangle - \int_0^t \langle \gamma(x, \eta_s) \mathcal{B}(f(\cdot)r(\cdot, \eta_s))(x) + F(x, \eta_s)f(x), \eta_s(dx) \rangle ds$$

is a martingale, $M_f(\cdot)$, with

$$\langle M_f \rangle_t = \alpha \int_0^t \left\langle 2r(x,\eta_s)\gamma(x,\eta_s)f^2(x),\eta_s(x) \right\rangle ds$$

α = 0, non-local PDE
 α > 0, nonlinear superprocess

Martingale characterisation of limit

$$\langle f(x), \eta_t(dx) \rangle - \langle f(x), \eta_0(dx) \rangle - \int_0^t \langle \gamma(x, \eta_s) \mathcal{B}(f(\cdot)r(\cdot, \eta_s))(x) + F(x, \eta_s)f(x), \eta_s(dx) \rangle ds$$

is a martingale, $M_f(\cdot)$, with

$$\langle M_f \rangle_t = \alpha \int_0^t \left\langle 2r(x,\eta_s)\gamma(x,\eta_s)f^2(x),\eta_s(x) \right\rangle ds$$

α = 0, non-local PDE
 α > 0, nonlinear superprocess

e.g. $\gamma \equiv 1, r \equiv 1, F = 1 - h * \eta$, diffusion limit of Bolker-Pacala model: spatial branching process; reproductive successs decreases in crowded regions.

What is needed to make this rigorous?

$\mathcal{D}([0,\infty),S)$ càdlàg paths in S

Theorem (S, d) complete and separable. $\{X^N\}_{N\geq 1}$ family of processes with sample paths in $\mathcal{D}([0, \infty), S)$. Suppose

▶ For every $\varepsilon > 0$, and T > 0, \exists compact $\Gamma_{\varepsilon,T}$ s.t.

$$\inf_{N} \mathbb{P}\Big[X_{t}^{N} \in \Gamma_{\varepsilon,T} \quad \text{ for } 0 \leq t \leq T \Big] \geq 1 - \varepsilon$$

For Θ a dense subset of the set of bounded continuous functions in topology of uniform convergence on compacts, for each f ∈ Θ, {f(X^N.)}_{N≥1} is relatively compact as family of processes in D([0,∞), ℝ).

Then $\{X_{\cdot}^{N}\}_{N\geq 1}$ is relatively compact.

What is needed to make this rigorous?

$\mathcal{D}([0,\infty),S)$ càdlàg paths in S

Theorem (S, d) complete and separable. $\{X^N\}_{N\geq 1}$ family of processes with sample paths in $\mathcal{D}([0, \infty), S)$. Suppose

▶ For every $\varepsilon > 0$, and T > 0, \exists compact $\Gamma_{\varepsilon,T}$ s.t.

$$\inf_{N} \mathbb{P}\Big[X_{t}^{N} \in \Gamma_{\varepsilon,T} \quad \text{ for } 0 \leq t \leq T \Big] \geq 1 - \varepsilon$$

For Θ a dense subset of the set of bounded continuous functions in topology of uniform convergence on compacts, for each f ∈ Θ, {f(X^N.)}_{N≥1} is relatively compact as family of processes in D([0,∞), ℝ).

Then $\{X_{\cdot}^{N}\}_{N\geq 1}$ is relatively compact. Any infinite subsequence has a convergent subsequence.

What is needed to make this rigorous?

$\mathcal{D}([0,\infty),S)$ càdlàg paths in S

Theorem (S, d) complete and separable. $\{X^N\}_{N\geq 1}$ family of processes with sample paths in $\mathcal{D}([0, \infty), S)$. Suppose

▶ For every $\varepsilon > 0$, and T > 0, \exists compact $\Gamma_{\varepsilon,T}$ s.t.

$$\inf_{N} \mathbb{P}\Big[X_{t}^{N} \in \Gamma_{\varepsilon,T} \quad \text{ for } 0 \leq t \leq T \Big] \geq 1 - \varepsilon$$

For Θ a dense subset of the set of bounded continuous functions in topology of uniform convergence on compacts, for each f ∈ Θ, {f(X^N.)}_{N≥1} is relatively compact as family of processes in D([0,∞), ℝ).

Then $\{X_{\cdot}^{N}\}_{N\geq 1}$ is relatively compact. Any infinite subsequence has a convergent subsequence. If limit point unique have convergence.

 $\{\eta^N_{\cdot}\}_{N\geq 1}$ sequence of $D([0,\infty), \mathcal{M}_F(\mathbb{R}^d))$ -valued processes.

 $\{\eta^N_{\cdot}\}_{N\geq 1}$ sequence of $D([0,\infty), \mathcal{M}_F(\mathbb{R}^d))$ -valued processes. \sim Previous result does not apply directly

 $\{\eta^N_{\cdot}\}_{N\geq 1}$ sequence of $D([0,\infty), \mathcal{M}_F(\mathbb{R}^d))$ -valued processes. \rightsquigarrow Previous result does not apply directly

- Take \mathbb{R}^d , the one-point compactification of \mathbb{R}^d
- Prove relative compactness in $\mathcal{M}_F(\overline{\mathbb{R}^d})$
- Show 'no mass escaped to infinity', so limit points actually $D([0,\infty), \mathcal{M}_F(\mathbb{R}^d))$ -valued processes.

 $\{\eta^N_{\cdot}\}_{N\geq 1}$ sequence of $D([0,\infty), \mathcal{M}_F(\mathbb{R}^d))$ -valued processes. \rightsquigarrow Previous result does not apply directly

- Take $\overline{\mathbb{R}^d}$, the one-point compactification of \mathbb{R}^d
- Prove relative compactness in $\mathcal{M}_F(\overline{\mathbb{R}^d})$
- Show 'no mass escaped to infinity', so limit points actually D([0,∞), M_F(ℝ^d))-valued processes.

 $\{\eta: \langle 1,\eta\rangle \leq K\}$ is compact in $\mathcal{M}_F(\mathbb{R}^d)$

 $\{\eta^N_{\cdot}\}_{N\geq 1}$ sequence of $D([0,\infty), \mathcal{M}_F(\mathbb{R}^d))$ -valued processes. \sim Previous result does not apply directly

- Take $\overline{\mathbb{R}^d}$, the one-point compactification of \mathbb{R}^d
- Prove relative compactness in $\mathcal{M}_F(\overline{\mathbb{R}^d})$
- Show 'no mass escaped to infinity', so limit points actually D([0,∞), M_F(ℝ^d))-valued processes.

 $\{\eta: \langle 1,\eta\rangle \leq K\}$ is compact in $\mathcal{M}_F(\overline{\mathbb{R}^d})$

(We have already done the work in identifying the limit points)

$$\begin{split} \langle f(x), \eta_t^N(dx) \rangle &- \langle f(x), \eta_0^N(dx) \rangle \\ &- \int_0^t \langle \gamma(x, \eta_s) \Big(\theta \int \big(f(z) r(z, \eta_s) - f(x) r(x, \eta_s) \big) q_\theta(x, dz) \Big) \\ &+ F(x, \eta_s) f(x), \eta_s(dx) \rangle ds \end{split}$$

is a martingale, $M_{f}^{N}(\cdot),$ with

$$\langle M_f^N \rangle_t = \frac{\theta}{N} \int_0^t \left\langle \gamma(x,\eta_s) \int f^2(y) r(y,\eta_s) q_\theta(x,dy) \right. \\ \left. + f^2(x) \Big(r(x,\eta_s) \gamma(x,\eta_s) - \frac{1}{\theta} F(x,\eta_s) \Big), \eta_s(x) \right\rangle ds$$

$$egin{aligned} &\langle f(x),\eta_t^N(dx)
angle - \langle f(x),\eta_0^N(dx)
angle \ &-\int_0^tig\langle \gamma(x,\eta_s)\Big(heta\intig(f(z)r(z,\eta_s)-f(x)r(x,\eta_s)ig)q_ heta(x,dz)ig) \ &+F(x,\eta_s)f(x),\eta_s(dx)ig
angle ds \end{aligned}$$

is a martingale, $M_f^N(\cdot)$, with

$$\begin{split} \langle M_f^N \rangle_t &= \frac{\theta}{N} \int_0^t \left\langle \gamma(x,\eta_s) \int f^2(y) r(y,\eta_s) q_\theta(x,dy) \right. \\ &+ f^2(x) \Big(r(x,\eta_s) \gamma(x,\eta_s) - \frac{1}{\theta} F(x,\eta_s) \Big), \eta_s(x) \Big\rangle ds \end{split}$$

- $\blacktriangleright \gamma$ bounded above
- F bounded above but not necessarily below, c.f. Bolker-Pacala example

Compact containment of $\{\eta_{\cdot}^{N}\}_{N\geq 1}$

$$\begin{split} \langle 1, \eta_t^N(dx) \rangle &= \langle 1, \eta_0^N(dx) \rangle \\ &+ \int_0^t \langle \gamma(x, \eta_s) \Big(\theta \int \big(r(z, \eta_s) - r(x, \eta_s) \big) q_\theta(x, dz) \Big) \\ &+ F(x, \eta_s), \eta_s(dx) \big\rangle ds + M_1^N(t) \\ &\leq \langle 1, \eta_0^N \rangle + C \int_0^t \langle 1, \eta_s^N \rangle ds + M_1^N(t) \end{split}$$

Grönwall's inequality \implies for all $t \in [0, T]$,

$$\mathbb{E}[\langle 1, \eta_t^N \rangle] \le C_T \mathbb{E}[\langle 1, \eta_0^N \rangle]$$

Compact containment of $\{\eta^N_{\cdot}\}_{N\geq 1}$

$$\begin{split} \langle 1, \eta_t^N(dx) \rangle &= \langle 1, \eta_0^N(dx) \rangle \\ &+ \int_0^t \left\langle \gamma(x, \eta_s) \left(\theta \int \left(r(z, \eta_s) - r(x, \eta_s) \right) q_\theta(x, dz) \right) \right. \\ &+ F(x, \eta_s), \eta_s(dx) \right\rangle ds + M_1^N(t) \\ &\leq \langle 1, \eta_0^N \rangle + C \int_0^t \langle 1, \eta_s^N \rangle ds + M_1^N(t) \end{split}$$

Grönwall's inequality \implies for all $t \in [0, T]$,

$$\mathbb{E}[\langle 1, \eta_t^N \rangle] \le C_T \mathbb{E}[\langle 1, \eta_0^N \rangle]$$

For compact containment we'd like to bound $\mathbb{E}[\sup_{0 \le t \le T} \langle 1, \eta_t^N \rangle].$

Taking suprema above, need to control $\sup_{0 \le t \le T} M_1^N(t)$

A useful trick

$$\begin{split} \langle M_1^N \rangle_t &= \frac{\theta}{N} \int_0^t \left\langle \gamma(x,\eta_s) \int r(y,\eta_s) q_\theta(x,dy) \right. \\ &+ \left(r(x,\eta_s) \gamma(x,\eta_s) - \frac{1}{\theta} F(x,\eta_s) \right), \eta_s(x) \right\rangle ds \end{split}$$

A useful trick

$$\begin{split} \langle M_1^N \rangle_t &= \frac{\theta}{N} \int_0^t \left\langle \gamma(x,\eta_s) \int r(y,\eta_s) q_\theta(x,dy) \right. \\ &+ \left(r(x,\eta_s) \gamma(x,\eta_s) - \frac{1}{\theta} F(x,\eta_s) \right), \eta_s(x) \right\rangle ds \end{split}$$

Problem: F not bounded below

A useful trick

$$\begin{split} \langle M_1^N \rangle_t &= \frac{\theta}{N} \int_0^t \left\langle \gamma(x,\eta_s) \int r(y,\eta_s) q_\theta(x,dy) \right. \\ &+ \left(r(x,\eta_s) \gamma(x,\eta_s) - \frac{1}{\theta} F(x,\eta_s) \right), \eta_s(x) \right\rangle ds \end{split}$$

Problem: F not bounded below Solution: Rearrange equation for $\langle 1,\eta_t^N\rangle$

$$\begin{split} &-\int_0^t \left\langle F(x,\eta_s),\eta_s(dx) \right\rangle ds = \langle 1,\eta_0^N(dx) \rangle - \langle 1,\eta_t^N(dx) \rangle \\ &+\int_0^t \left\langle \gamma(x,\eta_s) \Big(\theta \int \big(r(z,\eta_s) - r(x,\eta_s) \big) q_\theta(x,dz) \Big) ds + M_1^N(t) \right. \\ &\leq \langle 1,\eta_0^N \rangle + C \int_0^t \langle 1,\eta_s^N \rangle ds + M_1^N(t) \end{split}$$

Compact containment of $\{\eta_{\cdot}^{N}\}_{N\geq 1}$

Combining boundedness of $\mathbb{E}\big[\langle 1,\eta_t^N\rangle\big]$ and the calculation above, $\mathbb{E}[\langle M_1^N\rangle_T] < C_T'$

▶ Burkholder-Davis-Gundy $\implies \mathbb{E} \left[\sup_{0 \le t \le T} M_1^N(t) \right] < C_T''$

Combining boundedness of $\mathbb{E}\big[\langle 1,\eta_t^N\rangle\big]$ and the calculation above, $\mathbb{E}[\langle M_1^N\rangle_T] < C_T'$

- Burkholder-Davis-Gundy $\implies \mathbb{E}\left[\sup_{0 \le t \le T} M_1^N(t)\right] \le C_T''$
- From which $\mathbb{E}\left[\sup_{0 \le t \le T} \langle 1, \eta_t^N \rangle\right] < C_T'''$.

Combining boundedness of $\mathbb{E}\big[\langle 1,\eta_t^N\rangle\big]$ and the calculation above, $\mathbb{E}[\langle M_1^N\rangle_T] < C_T'$

- ▶ Burkholder-Davis-Gundy $\implies \mathbb{E} \left[\sup_{0 \le t \le T} M_1^N(t) \right] < C_T''$
- From which $\mathbb{E}\left[\sup_{0 \le t \le T} \langle 1, \eta_t^N \rangle\right] < C_T'''$.
- Markov inequality \rightsquigarrow compact containment of $\{\eta^N_{\cdot}\}_{N\geq 1}$

Combining boundedness of $\mathbb{E}\big[\langle 1,\eta_t^N\rangle\big]$ and the calculation above, $\mathbb{E}[\langle M_1^N\rangle_T] < C_T'$

- ▶ Burkholder-Davis-Gundy $\implies \mathbb{E} \left[\sup_{0 \le t \le T} M_1^N(t) \right] < C_T''$
- From which $\mathbb{E}\left[\sup_{0 \le t \le T} \langle 1, \eta_t^N \rangle\right] < C_T'''$.
- Markov inequality \rightsquigarrow compact containment of $\{\eta_{\cdot}^{N}\}_{N\geq 1}$

Still need to show that for suitable test functions, the sequence of real-valued processes $\{f(\eta^N_\cdot)\}_{N\geq 1}$ is relatively compact

The Aldous-Rebolledo criterion

For each T > 0, for each fixed $0 \le t \le T$, the sequence $\{\langle f, \eta_t^N \rangle\}_{N \ge 1}$ is tight, and for any sequence of stopping times τ_N bounded by T, and each $\nu > 0$, there exist $\delta > 0$, $N_0 > 0$ s.t.

$$\begin{split} \sup_{N>N_0} \sup_{t\in[0,\delta]} \mathbb{P}\Big\{\Big|\int_{\tau}^{\tau+t} \int_{\mathbb{R}^d} \big\{\gamma(x,\eta_s^N)B_f(x,\eta_s^N) \\ &+ f(x)F(x,\eta_s^N)\big\}\eta_s^N(dx)ds\Big| > \nu\Big\} < \nu, \\ \text{and} \quad \sup_{N>N_0} \sup_{t\in[0,\delta]} \mathbb{P}\left\{\big|\langle M^N(f)\rangle_{\tau+t} - \langle M^N(f)\rangle_{\tau}\big| > \nu\big\} < \nu. \end{split}$$

The Aldous-Rebolledo criterion

For each T > 0, for each fixed $0 \le t \le T$, the sequence $\{\langle f, \eta_t^N \rangle\}_{N \ge 1}$ is tight, and for any sequence of stopping times τ_N bounded by T, and each $\nu > 0$, there exist $\delta > 0$, $N_0 > 0$ s.t.

$$\sup_{N>N_0} \sup_{t\in[0,\delta]} \mathbb{P}\Big\{\Big|\int_{\tau}^{\tau+t} \int_{\mathbb{R}^d} \big\{\gamma(x,\eta_s^N)B_f(x,\eta_s^N) + f(x)F(x,\eta_s^N)\big\}\eta_s^N(dx)ds\Big| > \nu\Big\} < \nu,$$

and $\sup_{N>N_0} \sup_{t\in[0,\delta]} \mathbb{P}\left\{ \left| \langle M^N(f) \rangle_{\tau+t} - \langle M^N(f) \rangle_{\tau} \right| > \nu \right\} < \nu.$

Follow easily from our calculations above

The Aldous-Rebolledo criterion

For each T > 0, for each fixed $0 \le t \le T$, the sequence $\{\langle f, \eta_t^N \rangle\}_{N \ge 1}$ is tight, and for any sequence of stopping times τ_N bounded by T, and each $\nu > 0$, there exist $\delta > 0$, $N_0 > 0$ s.t.

$$\sup_{N>N_0} \sup_{t\in[0,\delta]} \mathbb{P}\Big\{\Big|\int_{\tau}^{\tau+t} \int_{\mathbb{R}^d} \big\{\gamma(x,\eta_s^N)B_f(x,\eta_s^N) + f(x)F(x,\eta_s^N)\big\}\eta_s^N(dx)ds\Big| > \nu\Big\} < \nu,$$

and $\sup_{N>N_0} \sup_{t\in[0,\delta]} \mathbb{P}\left\{ \left| \langle M^N(f) \rangle_{\tau+t} - \langle M^N(f) \rangle_{\tau} \right| > \nu \right\} < \nu.$

Follow easily from our calculations above

When limit points deterministic, can scale again to get classical pde

Can also go direct to deterministic pde in some circumstances

Ancestral lineages: heuristics

Recall $L_t = ($ location of the genetic ancestor at time t ago)New individual establishes at y from parent at x rate

 $\theta N \eta_t^N(dx) \gamma(x, \eta_t^N) q_\theta(x, dy) r(y, \eta_t^N).$

Ancestral lineages: heuristics

Recall $L_t = ($ location of the genetic ancestor at time t ago)New individual establishes at y from parent at x rate

$$\theta N \eta_t^N(dx) \gamma(x, \eta_t^N) q_\theta(x, dy) r(y, \eta_t^N).$$

Suppose that η^N had a density (it does not), $\eta^N_t(dx) = \varphi^N_t(x) dx$.

$$\mathbb{P}\big[L_{t+dt} = x|L_t = y\big] = \frac{\theta\gamma(x,\eta_t^N)r(y,\eta_t^N)\varphi_t^N(x)}{\varphi_t^N(y)}\frac{q_\theta(x,dy)}{dy}dxdt.$$

Ancestral lineages: heuristics

Recall $L_t = ($ location of the genetic ancestor at time t ago)New individual establishes at y from parent at x rate

$$\theta N \eta_t^N(dx) \gamma(x, \eta_t^N) q_\theta(x, dy) r(y, \eta_t^N).$$

Suppose that η^N had a density (it does not), $\eta^N_t(dx) = \varphi^N_t(x) dx$.

$$\mathbb{P}\big[L_{t+dt} = x|L_t = y\big] = \frac{\theta\gamma(x,\eta_t^N)r(y,\eta_t^N)\varphi_t^N(x)}{\varphi_t^N(y)}\frac{q_\theta(x,dy)}{dy}dxdt.$$

$$\begin{split} \mathbb{E}[f(L_{s+ds}^{N}) - f(y) \mid L_{s}^{N} = y] \\ = ds \,\theta \int \left(f(x) - f(y)\right) \frac{\varphi_{T-s}^{N}(x)\gamma(x,\eta_{T-s}^{N})r(y,\eta_{T-s}^{N})}{\varphi_{T-s}^{N}(y)} q_{\theta}(x,y)dx. \end{split}$$

(Note that this integral is with respect to x.)

Generator ancestral lineage

$$\begin{split} \mathcal{L}_s^{\theta} f(y) &= \lim_{ds \to 0} \frac{1}{ds} \mathbb{E}[f(L_{s+ds}^N) - f(y) \mid L_s^N = y] \\ &= \theta \int \left(f(x) - f(y) \right) \frac{\varphi_{T-s}^N(x) \gamma(x, \eta_{T-s}^N) r(y, \eta_{T-s}^N)}{\varphi_{T-s}^N(y)} q_{\theta}(x, y) dx \end{split}$$

Generator ancestral lineage

$$\begin{split} \mathcal{L}_s^{\theta} f(y) &= \lim_{ds \to 0} \frac{1}{ds} \mathbb{E}[f(L_{s+ds}^N) - f(y) \mid L_s^N = y] \\ &= \theta \int \left(f(x) - f(y) \right) \frac{\varphi_{T-s}^N(x) \gamma(x, \eta_{T-s}^N) r(y, \eta_{T-s}^N)}{\varphi_{T-s}^N(y)} q_{\theta}(x, y) dx \end{split}$$

$$\begin{split} \theta & \int \big(f(x) - f(y)\big)g(x)q_{\theta}(x,y)dx \\ &= \theta \int \big\{(f(x)g(x) - f(y)g(y)) - f(y)(g(x) - g(y))\big\}q_{\theta}(x,y)dx \\ & \xrightarrow{\theta \to \infty} \quad \mathcal{B}^*(fg)(y) - f(y)\mathcal{B}^*g(y). \end{split}$$

Generator ancestral lineage

$$\begin{aligned} \mathcal{L}_{s}^{\theta}f(y) &= \lim_{ds \to 0} \frac{1}{ds} \mathbb{E}[f(L_{s+ds}^{N}) - f(y) \mid L_{s}^{N} = y] \\ &= \theta \int \left(f(x) - f(y)\right) \frac{\varphi_{T-s}^{N}(x)\gamma(x,\eta_{T-s}^{N})r(y,\eta_{T-s}^{N})}{\varphi_{T-s}^{N}(y)} q_{\theta}(x,y) dx \end{aligned}$$

$$\begin{aligned} \theta & \int \big(f(x) - f(y)\big)g(x)q_{\theta}(x,y)dx \\ &= \theta \int \big\{(f(x)g(x) - f(y)g(y)) - f(y)(g(x) - g(y))\big\}q_{\theta}(x,y)dx \\ & \xrightarrow{\theta \to \infty} \quad \mathcal{B}^*(fg)(y) - f(y)\mathcal{B}^*g(y). \end{aligned}$$

Set $g = \varphi_{T-s} \gamma$,

$$\mathcal{L}_s f = \frac{r}{\varphi_{T-s}} \left\{ \mathcal{B}^*(\gamma \varphi_{T-s} f) - f \mathcal{B}^*(\gamma \varphi_{T-s}) \right\}$$

Example: $\mathcal{B} = \Delta$

$$\mathcal{L}_s f = \frac{r}{\varphi_{T-s}} \left\{ \mathcal{B}^*(\gamma \varphi_{T-s} f) - f \mathcal{B}^*(\gamma \varphi_{T-s}) \right\}$$

$$\mathcal{L}_s f = \frac{r}{\varphi_{T-s}} \left\{ \Delta(\gamma \varphi_{T-s} f) - f \Delta(\gamma \varphi_{T-s}) \right\}$$
$$= r \gamma \Delta f + 2r \gamma \nabla \log(\gamma \varphi) \cdot \nabla f$$

Generator of a time inhomogeneous diffusion process

Suppose population has a stationary density w(x) say,

$$dL_t = 2r(L_t)\gamma(L_t)\nabla \log(w\gamma)(L_t)dt + \sqrt{2r(L_t)\gamma(L_t)}dB_t$$

Suppose population has a stationary density w(x) say,

$$dL_t = 2r(L_t)\gamma(L_t)\nabla \log(w\gamma)(L_t)dt + \sqrt{2r(L_t)\gamma(L_t)}dB_t$$

- Lineage speed determined by rate of production of mature offspring $(r\gamma)$
- Lineages drawn to regions of high fecundity

Suppose population has a stationary density w(x) say,

 $dL_t = 2r(L_t)\gamma(L_t)\nabla \log(w\gamma)(L_t)dt + \sqrt{2r(L_t)\gamma(L_t)}dB_t$

• Lineage speed determined by rate of production of mature offspring $(r\gamma)$

Lineages drawn to regions of high fecundity

Lineage motion not uniquely determined by population density

Suppose population has a stationary density w(x) say,

 $dL_t = 2r(L_t)\gamma(L_t)\nabla \log(w\gamma)(L_t)dt + \sqrt{2r(L_t)\gamma(L_t)}dB_t$

• Lineage speed determined by rate of production of mature offspring $(r\gamma)$

Lineages drawn to regions of high fecundity

Lineage motion not uniquely determined by population density

$$r\Delta(\gamma w) + (r\gamma - \mu)w = 0.$$

Multiply r and μ by λ .

- Same stationary density.
- ► Lineages spend more time where λ < 1 so those areas have higher reproductive value.

Classical models emerge as special cases of our scaling limits.

Classical models emerge as special cases of our scaling limits.
 Fisher KPP equation, Allen-Cahn equation, Bolker-Pacala model, spatial branching processes, Wright-Fisher diffusion ...

Classical models emerge as special cases of our scaling limits.

- Fisher KPP equation, Allen-Cahn equation, Bolker-Pacala model, spatial branching processes, Wright-Fisher diffusion ...
- By using a lookdown construction, we can retain information about genealogies as we pass to our scaling limit.

Classical models emerge as special cases of our scaling limits.

- Fisher KPP equation, Allen-Cahn equation, Bolker-Pacala model, spatial branching processes, Wright-Fisher diffusion ...
- By using a lookdown construction, we can retain information about genealogies as we pass to our scaling limit.

Consider a single ancestral lineage

 $L_t = ($ location of the genetic ancestor at time t ago).

Classical models emerge as special cases of our scaling limits.

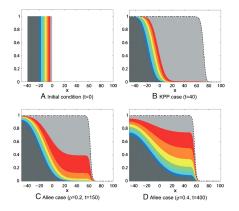
- Fisher KPP equation, Allen-Cahn equation, Bolker-Pacala model, spatial branching processes, Wright-Fisher diffusion ...
- By using a lookdown construction, we can retain information about genealogies as we pass to our scaling limit.

Consider a single ancestral lineage

 $L_t = ($ location of the genetic ancestor at time t ago).

For the purpose of this talk, work in classical PDE limit

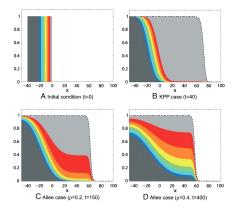
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + u \ (1 - u)$$



Individuals in front descended from individuals in front at previous time

Roques et al. PNAS (2012)

$$\frac{\partial u_{\mathbf{k}}}{\partial t} = \frac{\partial^2 u_{\mathbf{k}}}{\partial x^2} + u_{\mathbf{k}}(1-u)$$

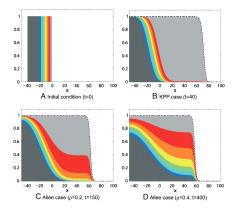


$$u = \sum_k u_k$$

Individuals in front descended from individuals in front at previous time

Roques et al. PNAS (2012)

$$\frac{\partial u_{k}}{\partial t} = \frac{\partial^{2} u_{k}}{\partial r^{2}} + u_{k}(1-u)(u-\rho)$$



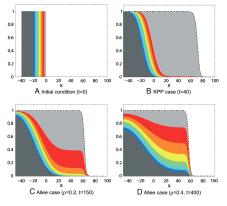
 $\rho \in (0, 1/2) \quad u = \sum_k u_k$

Individuals in front descended from individuals in front at previous time

Individuals in front can be descended from individuals in bulk.

Roques et al. PNAS (2012)

$$\frac{\partial u_{k}}{\partial t} = \frac{\partial^{2} u_{k}}{\partial r^{2}} + u_{k}(1-u)(u-\rho)$$



Roques et al. PNAS (2012)

 $\rho \in (0, 1/2) \quad u = \sum_k u_k$

Individuals in front descended from individuals in front at previous time

Individuals in front can be descended from individuals in bulk.

When add noise, → different genealogies (c.f. E-Penington 2022)

$$\frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2}(u^2) + u(1-u),$$

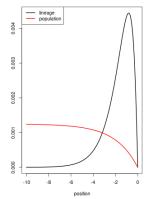
'Effective' density dependent dispersal

$$\frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2}(u^2) + u(1-u), \quad u(t,x) = \left(1 - \exp\left(\frac{1}{2}(x-t)\right)\right)_+$$

'Effective' density dependent dispersal

$$\frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2}(u^2) + u(1-u), \quad u(t,x) = \left(1 - \exp\left(\frac{1}{2}(x-t)\right)\right)_+$$

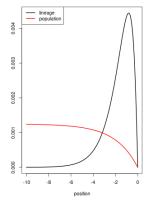
'Effective' density dependent dispersal



Ancestral lineage has stationary distribution $\pi(x) \propto e^x (1 - e^{x/2})$ for $x < 0 \dots$, in contrast to the Fisher-KPP equation

$$\frac{\partial u}{\partial t} = \frac{\partial^2}{\partial x^2}(u^2) + u(1-u), \quad u(t,x) = \left(1 - \exp\left(\frac{1}{2}(x-t)\right)\right)_+$$

'Effective' density dependent dispersal



Ancestral lineage has stationary distribution $\pi(x) \propto e^x (1 - e^{x/2})$ for $x < 0 \dots$, in contrast to the Fisher-KPP equation

 \sim When add noise can expect genealogy to be quite different from that under Fisher-KPP, \sim Allee effect

Take-home messages from these lectures

Noise matters

Space matters

The dimension of the space

The geometry of the space

Local interactions matter, even over large scales

Take-home messages from these lectures

Noise matters

Space matters

- The dimension of the space
- The geometry of the space
- Local interactions matter, even over large scales

THANK YOU FOR YOUR ATTENTION