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Recap: the Wright-Malécot model

I Individuals are scattered
across a two-dimensional
space.

I In each generation, each
individual produces a
Poisson number of offspring
(average one).

I Offspring are scattered in a
Gaussian distribution around
their parent.
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Modelling populations in which population density changes

Recall the pain in the torus.

t = 0 t = 10

I In d = 1, 2, independent reproduction =⇒ clumping;



Modelling populations in which population density changes

Recall the pain in the torus.

t = 0 t = 10

I In d = 1, 2, independent reproduction =⇒ clumping;



Modelling populations in which population density changes

Recall the pain in the torus.

t = 0 t = 10

I In d = 1, 2, independent reproduction =⇒ clumping;



Modifying Wright-Malécot (à la Bolker-Pacala)

Think of population as a (purely atomic) measure X.

I Expected number offspring of individual at x in generation t,(
1 + ε(M − 〈h(x, y), X(t, y)〉)

)
+

(〈·, ·〉 integration)

(Small in crowded regions, big in sparsely populated regions)

For suitable M , h and dispersal
kernel, the population is stable.

Roughly, individuals must disperse

sufficiently quickly relative to the

range of interaction induced by

density dependent regulation.



Sometimes easier to consider scaling limits.

For our modified Wright-Malécot model, can obtain (stochastic
non-local) Fisher-KPP equation in the limit of high population
intensity.

Informally:

dXs(x) = σ∆Xs(x)ds+ (M − 〈h(x, y), Xs(y)〉)Xs(x)ds

+
√
γXs(x)W (ds, dx)

More rigorously

〈φ,Xt〉 − 〈φ,X0〉 −
∫ t

0
〈σ∆φ,Xs〉ds

−
∫ t

0
〈
(
M − 〈h(x, y), Xs(dy)〉)

)
φ,Xs(dx)〉ds

is a martingale with quadratic variation∫ t

0
〈γφ2, Xs〉ds.
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Survival/extinction d = 2, X0 Lebesgue

h(x, y) = h(‖x− y‖). Define Xθ by

〈φ,Xθ
t 〉 = 〈 1

θ2
φ
(x
θ

)
, Xθ2t(dx)〉

and hθ(r) = θ2h(θr).

〈φ,Xθ
t 〉 − 〈φ,Xθ

0 〉 −
∫ t

0
〈σ∆φ,Xθ

s 〉ds

−
∫ t

0
〈θ2
(
M − 〈hθ(‖x− y‖), Xθ

s (dy)〉
)
φ,Xθ

s (dx)〉ds

is a martingale with quadratic variation∫ t

0
〈γφ2, Xθ

s 〉ds.

If r2h(r)→∞ as r →∞ expect extinction.
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Ancestral lineages?

The lineage of a bit of modern genome is

Lt = (location of the genetic ancestor at time t ago)

Key quantity, effective dispersal rate σe of ancestral lineages.

Sample individual from the population in steady state.

I Wright-Malécot assumed ancestry described by random walk
with jumps determined by the forwards in time Gaussian
dispersion kernel. Over large spatial and temporal scales
approximately Brownian motion;

I (Numerically) in modified model, over large spatial and
temporal scales approximately Brownian motion, but with
larger variance than suggested by forwards in time kernel.

Compare to stepping stone model.
Is this behaviour generic?



Some problems with models so far

I Stepping stone model: subdivided population, population
size in each deme exogenously specified;

I Wright-Malécot model: inconsistent assumptions,
clumping/extinction (the pain in the torus);

I Wright-Malécot with local regulation: overcomes
clumping, but no known expressions for ancestral lineages;
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The world is not homogeneous



How we model it

What are we missing?
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The path to survival

η(x) = ‘population density at x’

I A juvenile is born per capita rate γ(x, η(x))

I Dispersal distribution q(x, dy) (Gaussian)

I Establishment probability r(y, η(y))

I Death of mature individuals rate µ(x, η(x))

Assume maturity reached instantly
We only track mature individuals
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A cautionary tale

Simulations by Gilia Patterson, using SLiM

I death: µ = 0.3 per generation

I establishment: r = 0.7

I dispersal: Gaussian with SD σ

I local density: in circles radius ε = 1

I reproduction with K = 2, λ = 3,

γ =
λ

1 + (local density)/K

I non-spatial equilibrium density:

K
( λ

1− r
− 1
)



Large dispersal distance

I dispersal distance σ = 3

I interaction distance ε = 1

I mean number offspring ∝
(
1 + (density)/K

)−1



Small dispersal distance

I dispersal distance σ = 0.2

I interaction distance ε = 1

I mean number offspring ∝
(
1 + (density)/K

)−1

Low dispersal distance compared to distance over which negatively
influenced by presence of neighbours can lead to strong clumping.
c.f., e.g., Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population

model, N Britton, SIAM J. Appl. Math. 1990.
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Characterising the model

Birth-death process with dynamics:

I A juvenile is born per capita rate γ(x, η(x))

I Dispersal distribution q(x, dy) (Gaussian)

I (Instantaneous) establishment probability r(y, η(y))

I Death of mature individuals rate µ(x, η(x))

Think of population as a point measure, with atoms of mass 1/N .
Write

〈f, η〉 =
1

N

∑
f(Xi) =

∫
f(x)η(dx)

Unpacking the notation:

γ(x, η(x)) = γ
(
x, ργ ∗ η(x)

)
; ργ ∗ η(x) =

∫
ργ(x− y)η(dy)

ρr need not be the same as ργ
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Scaling the model Parameters N , θ

Birth-death process with dynamics:

I A juvenile is born per capita rate θγ(x, η(x))

I Dispersal distribution qθ(x, dz) (Gaussian mean and variance
order 1/θ))

I (Instantaneous) establishment probability r(z, η(z))

I Death of mature individuals rate µθ(x, η(x))

Assume: Typically B = ∆

∫
θ
(
r(z, η)f(z)−r(x, η)f(x)

)
qθ(x, dz)

θ→∞−→ B
(
r(·, η)f(·)

)
(x)

θ
(
r(x, η)γ(x, η)− µθ(x, η)

)
= F (x, η)
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Mean measure

I Individual at x gives birth to single mature offspring at z rate
θγ(x, η)r(z, η)qθ(x, dz) increment 〈f, η〉 = 1

N f(z)

I Individual at x dies rate θµθ(x, η) increment 〈f, η〉 = − 1
N f(x)

= lim
δt↓0

1

δt
E
[
〈f, ηδt〉 − 〈f, η〉

∣∣∣η0 = η
]

∫
qθ(x, dz) = 1

= θ

∫ ∫
f(z)r(z, η)qθ(x, dz)γ(x, η)η(dx)−θ

∫
f(x)µθ(x, η)η(dx).

=

∫ (∫
θ (f(z)r(z, η)− f(x)r(x, η)) qθ(x, dz)

)
γ(x, η)η(dx)

+

∫ ∫
f(x)θ

(
r(x, η)γ(x, η)− µθ(x, η)

)
η(dx).

θ→∞−→
∫
γ(x, η)B

(
f(·)r(·, η)

)
(x)η(dx) +

∫
f(x)F (x, η)η(dx)
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Squared increments (angle bracket process)

I Individual at x gives birth to single mature offspring at z rate
θγ(x, η)r(z, η)qθ(x, dz) increment 〈f, η〉 = 1

N f(z)

I Individual at x dies rate θµθ(x, η) increment 〈f, η〉 = − 1
N f(x)

Nθ
{〈
γ(x, η)

∫
1

N2
f2(z)r(z, η)qθ(x, dz), η(dx)

〉
+
〈 1

N2
f2(x)µθ(x, η), η(dx)

〉}
=

θ

N

〈
γ(x, η)

∫
f2(z)r(z, η)qθ(x, dz) + f2(x)µθ(x, η), η(dx)

〉

∫
f2(z)r(z, η)qθ(x, dz)→ f2(x)r(x, η), µθ = rγ − 1

θ
F → rγ

θ→∞−→ θ

N

〈
2r(x, η)γ(x, η)f2(x), η(dx)

〉

α := lim
θ

N
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Martingale characterisation of limit

〈f(x), ηt(dx)〉 − 〈f(x), η0(dx)〉

−
∫ t

0

〈
γ(x, ηs)B

(
f(·)r(·, ηs)

)
(x) + F (x, ηs)f(x), ηs(dx)

〉
ds

is a martingale, Mf (·), with

〈Mf 〉t = α

∫ t

0

〈
2r(x, ηs)γ(x, ηs)f

2(x), ηs(x)
〉
ds

I α = 0, non-local PDE
I α > 0, nonlinear superprocess

e.g. γ ≡ 1, r ≡ 1, F = 1− h ∗ η, diffusion limit of Bolker-Pacala
model: spatial branching process; reproductive successs decreases
in crowded regions.
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model: spatial branching process; reproductive successs decreases
in crowded regions.
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What is needed to make this rigorous?

D([0,∞), S) càdlàg paths in S
Theorem (S, d) complete and separable. {XN}N≥1 family of
processes with sample paths in D([0,∞), S). Suppose

I For every ε > 0, and T > 0, ∃ compact Γε,T s.t.

inf
N

P
[
XN
t ∈ Γε,T for 0 ≤ t ≤ T

]
≥ 1− ε

I For Θ a dense subset of the set of bounded continuous
functions in topology of uniform convergence on compacts, for
each f ∈ Θ, {f(XN

· )}N≥1 is relatively compact as family of
processes in D([0,∞),R).

Then {XN
· }N≥1 is relatively compact.

Any infinite subsequence has a convergent subsequence.
If limit point unique have convergence.
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Application to {ηN· }N≥1

{ηN· }N≥1 sequence of D
(
[0,∞),MF (Rd)

)
-valued processes.

; Previous result does not apply directly

I Take Rd, the one-point compactification of Rd

I Prove relative compactness in MF (Rd)
I Show ‘no mass escaped to infinity’, so limit points actually
D
(
[0,∞),MF (Rd)

)
-valued processes.

{η : 〈1, η〉 ≤ K} is compact in MF (Rd)

(We have already done the work in identifying the limit points)
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Conditions on our parameters?

〈f(x), ηNt (dx)〉 − 〈f(x), ηN0 (dx)〉

−
∫ t

0

〈
γ(x, ηs)

(
θ

∫ (
f(z)r(z, ηs)− f(x)r(x, ηs)

)
qθ(x, dz)

)
+ F (x, ηs)f(x), ηs(dx)

〉
ds

is a martingale, MN
f (·), with

〈MN
f 〉t =

θ

N

∫ t

0

〈
γ(x, ηs)

∫
f2(y)r(y, ηs)qθ(x, dy)

+ f2(x)
(
r(x, ηs)γ(x, ηs)−

1

θ
F (x, ηs)

)
, ηs(x)

〉
ds

I γ bounded above
I F bounded above but not necessarily below,

c.f. Bolker-Pacala example
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Compact containment of {ηN· }N≥1

〈1, ηNt (dx)〉 = 〈1, ηN0 (dx)〉

+

∫ t

0

〈
γ(x, ηs)

(
θ

∫ (
r(z, ηs)− r(x, ηs)

)
qθ(x, dz)

)
+ F (x, ηs), ηs(dx)

〉
ds+MN

1 (t)

≤ 〈1, ηN0 〉+ C

∫ t

0
〈1, ηNs 〉ds+MN

1 (t)

Grönwall’s inequality =⇒ for all t ∈ [0, T ],

E
[
〈1, ηNt 〉

]
≤ CTE

[
〈1, ηN0 〉

]

For compact containment we’d like to bound E
[

sup0≤t≤T 〈1, ηNt 〉
]
.

Taking suprema above, need to control sup0≤t≤T M
N
1 (t)
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A useful trick

〈MN
1 〉t =

θ

N

∫ t

0

〈
γ(x, ηs)

∫
r(y, ηs)qθ(x, dy)

+
(
r(x, ηs)γ(x, ηs)−

1

θ
F (x, ηs)

)
, ηs(x)

〉
ds

Problem: F not bounded below
Solution: Rearrange equation for 〈1, ηNt 〉

−
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Compact containment of {ηN· }N≥1

Combining boundedness of E
[
〈1, ηNt 〉

]
and the calculation above,

E[〈MN
1 〉T ] < C ′T

I Burkholder-Davis-Gundy =⇒ E
[

sup0≤t≤T M
N
1 (t)

]
< C ′′T

I From which E
[

sup0≤t≤T 〈1, ηNt 〉
]
< C ′′′T .

I Markov inequality ; compact containment of {ηN· }N≥1

Still need to show that for suitable test functions, the sequence of
real-valued processes {f(ηN· )}N≥1 is relatively compact



Compact containment of {ηN· }N≥1

Combining boundedness of E
[
〈1, ηNt 〉

]
and the calculation above,

E[〈MN
1 〉T ] < C ′T

I Burkholder-Davis-Gundy =⇒ E
[

sup0≤t≤T M
N
1 (t)

]
< C ′′T

I From which E
[

sup0≤t≤T 〈1, ηNt 〉
]
< C ′′′T .

I Markov inequality ; compact containment of {ηN· }N≥1

Still need to show that for suitable test functions, the sequence of
real-valued processes {f(ηN· )}N≥1 is relatively compact



Compact containment of {ηN· }N≥1

Combining boundedness of E
[
〈1, ηNt 〉

]
and the calculation above,

E[〈MN
1 〉T ] < C ′T

I Burkholder-Davis-Gundy =⇒ E
[

sup0≤t≤T M
N
1 (t)

]
< C ′′T

I From which E
[

sup0≤t≤T 〈1, ηNt 〉
]
< C ′′′T .

I Markov inequality ; compact containment of {ηN· }N≥1

Still need to show that for suitable test functions, the sequence of
real-valued processes {f(ηN· )}N≥1 is relatively compact



Compact containment of {ηN· }N≥1

Combining boundedness of E
[
〈1, ηNt 〉

]
and the calculation above,

E[〈MN
1 〉T ] < C ′T

I Burkholder-Davis-Gundy =⇒ E
[

sup0≤t≤T M
N
1 (t)

]
< C ′′T

I From which E
[

sup0≤t≤T 〈1, ηNt 〉
]
< C ′′′T .

I Markov inequality ; compact containment of {ηN· }N≥1

Still need to show that for suitable test functions, the sequence of
real-valued processes {f(ηN· )}N≥1 is relatively compact



The Aldous-Rebolledo criterion

For each T > 0, for each fixed 0 ≤ t ≤ T , the sequence
{〈f, ηNt 〉}N≥1 is tight, and for any sequence of stopping times τN
bounded by T , and each ν > 0, there exist δ > 0, N0 > 0 s.t.

sup
N>N0

sup
t∈[0,δ]

P
{∣∣∣ ∫ τ+t

τ

∫
Rd

{
γ(x, ηNs )Bf (x, ηNs )

+ f(x)F (x, ηNs )
}
ηNs (dx)ds

∣∣∣ > ν
}
< ν,

and sup
N>N0

sup
t∈[0,δ]

P
{∣∣〈MN (f)〉τ+t − 〈MN (f)〉τ

∣∣ > ν
}
< ν.

Follow easily from our calculations above

I When limit points deterministic, can scale again to get
classical pde

I Can also go direct to deterministic pde in some circumstances
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Ancestral lineages: heuristics

Recall Lt = (location of the genetic ancestor at time t ago)
New individual establishes at y from parent at x rate

θNηNt (dx)γ(x, ηNt )qθ(x, dy)r(y, ηNt ).

Suppose that ηN had a density (it does not), ηNt (dx) = ϕNt (x)dx.

P
[
Lt+dt = x|Lt = y

]
=
θγ(x, ηNt )r(y, ηNt )ϕNt (x)

ϕNt (y)

qθ(x, dy)

dy
dxdt.

E[f(LNs+ds)− f(y) | LNs = y]

= ds θ

∫
(f(x)− f(y))

ϕNT−s(x)γ(x, ηNT−s)r(y, η
N
T−s)

ϕNT−s(y)
qθ(x, y)dx.

(Note that this integral is with respect to x.)
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Generator ancestral lineage

Lθsf(y) = lim
ds→0

1

ds
E[f(LNs+ds)− f(y) | LNs = y]

= θ

∫
(f(x)− f(y))

ϕNT−s(x)γ(x, ηNT−s)r(y, η
N
T−s)

ϕNT−s(y)
qθ(x, y)dx

θ

∫ (
f(x)− f(y)

)
g(x)qθ(x, y)dx

= θ

∫ {
(f(x)g(x)−f(y)g(y))−f(y)(g(x)−g(y))

}
qθ(x, y)dx

θ→∞−→ B∗(fg)(y)− f(y)B∗g(y).

Set g = ϕT−sγ,

Lsf =
r

ϕT−s
{B∗(γϕT−sf)− fB∗(γϕT−s)}
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Example: B = ∆

Lsf =
r

ϕT−s
{B∗(γϕT−sf)− fB∗(γϕT−s)}

Lsf =
r

ϕT−s
{∆(γϕT−sf)− f∆(γϕT−s)}

= rγ∆f + 2rγ∇ log(γϕ) · ∇f

Generator of a time inhomogeneous diffusion process



Ancestral lineages

Suppose population has a stationary density w(x) say,

dLt = 2r(Lt)γ(Lt)∇ log(wγ)(Lt)dt+
√

2r(Lt)γ(Lt)dBt

I Lineage speed determined by rate of production of mature
offspring (rγ)

I Lineages drawn to regions of high fecundity

Lineage motion not uniquely determined by population density

r∆(γw) + (rγ − µ)w = 0.

Multiply r and µ by λ.

I Same stationary density.

I Lineages spend more time where λ < 1 - so those areas have
higher reproductive value.
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Some remarks about our model

I Classical models emerge as special cases of our scaling limits.

I Fisher KPP equation, Allen-Cahn equation, Bolker-Pacala
model, spatial branching processes, Wright-Fisher diffusion . . .

I By using a lookdown construction, we can retain information
about genealogies as we pass to our scaling limit.

Consider a single ancestral lineage

Lt =
(
location of the genetic ancestor at time t ago

)
.

For the purpose of this talk, work in classical PDE limit
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Reaction diffusion equations and range expansion (d = 1)

∂u

k

∂t = ∂2u

k

∂x2
+ u

k

(1− u)

(u− ρ), ρ ∈ (0, 1/2) u =
∑

k uk

Roques et al. PNAS (2012)

Individuals in front descended
from individuals in front at
previous time

Individuals in front can be
descended from individuals in
bulk.

When add noise, ; different
genealogies
(c.f. E-Penington 2022)
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A less classical example γ ∝ pop density, logistic control

∂u

∂t
=

∂2

∂x2
(u2) + u(1− u),

u(t, x) =

(
1− exp

(
1

2
(x− t)

))
+

‘Effective’ density dependent dispersal

Ancestral lineage has stationary
distribution π(x) ∝ ex

(
1− ex/2

)
for x < 0 . . ., in contrast to the
Fisher-KPP equation

; When add noise can expect
genealogy to be quite different
from that under Fisher-KPP,
∼ Allee effect
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Take-home messages from these lectures

I Noise matters
I Space matters

I The dimension of the space
I The geometry of the space

I Local interactions matter, even over large scales

THANK YOU FOR YOUR ATTENTION
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