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Spatial models so far: subdivided populations

Kimura’s stepping stone model Special case Ne(i) ≡ Ne

dpi =
∑
j

mji(pj − pi)dt +

√
1

Ne
pi(1− pi)dWi

{Wi}i∈I independent Brownian motions

System of W-F diffusions coupled through migration

The structured coalescent n:

I
{
ni 7→ ni − 1
nj 7→ nj + 1

at rate nimji

I ni 7→ ni − 1 at rate 1
2Ne

ni (ni − 1)



Isolation by distance

Malécot-Wright approximation for the stepping stone model

F = P[identity]
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The unreasonable effectiveness of the Kingman coalescent

Common to use Kingman coalescent even for natural populations
Replace census population size by an effective population size

Sampling uniformly from the torus T(L) ⊂ Z2

T = time to MRCA two individuals sampled uniformly from T(L)

I T0 = time to first come into same deme

I t0 = time to coalesce started from same
deme

T = T0 + t0
t0 � T0

On timescale L2 logL genealogy uniform sample from T(L)→
Kingman coalescent as L→∞ Zähle, Cox, Durrett (2005)

Census population size grows with L2 so this does not explain the
timescale seen in real populations



An obvious challenge



Modelling a spatial continuum: the Wright-Malécot model

I Individuals are scattered
across a two-dimensional
space.

I In each generation, each
individual produces a
Poisson number of offspring
(average one).

I Offspring are scattered in a
Gaussian distribution around
their parent.
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The pain in the torus (Felsenstein, 1975)

With thanks to Jerome Kelleher
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In d = 1, 2 population exhibits clumping/extinction
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Mathematical problems

Felsenstein (1975). The pain in the torus: In d = 1, 2, independent
reproduction =⇒ clumping;

Local regulation =⇒ correlated reproduction.

What about modifying the stepping stone model?

dpt(x) =
1

2
∆pt(x) +

√
1

2Ne
pt(x)(1− pt(x))dW (t, x)

In 2D the diffusion limit fails over small scales . . . and so does the
obvious backwards model.
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Biological problems

Genetic diversity much lower than expected from census numbers

Allele frequencies correlated over long distances

Demographic history of many
species dominated by large scale
extinction-recolonisation events
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Small neighbourhood size

In a spatial continuum, a single individual can be parent to a
significant proportion of the local population.



An individual based model

I Start with Poisson intensity λdx.
Events rate dt⊗ dx⊗ ξ(dr, du).
Throw down ball B(x, r).

I If region empty, do nothing,
otherwise:

I Choose parent from B(x, r),

I Each individual in region dies with
probability u,

I New individuals born according to
Poisson intensity λu1Br(x).
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λ→∞ limit (no space)

Start from Poiss(λ)

If first reproduction event has ‘impact’ u

I Poiss((1− u)λ) ‘survivors’;

I Poiss(uλ) offspring.

As λ→∞ proportion u of individuals die and are replaced by
offspring of the type of the parent.



The Λ-Fleming-Viot process

State {ρ(t, ·) ∈M1(K), t ≥ 0}. K space of genetic types.

I Poisson Point Process Π intensity dt⊗ F (du)

I if (t, u) ∈ Π, individual sampled at random from population at
time t− (i.e. choose k ∼ ρ(t−))

I proportion u of population replaced by offspring of chosen
individual

ρ(t, ·) = (1− u)ρ(t−, ·) + uδk.

F (du) = Λ(du)
u2

, Λ finite measure on [0, 1].

Donnelly & Kurtz (1999)

(‘Generalised Fleming-Viot process’, Bertoin & Le Gall 2003)



The Λ-Fleming-Viot process
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Λ-coalescents

Donnelly & Kurtz (1999), Pitman (1999), Sagitov (1999)

If there are currently n ancestral lineages, each transition involving
j of them merging happens at rate

βn,j =

∫ 1

0
uj(1− u)n−j

Λ(du)

u2

I Λ a finite measure on [0, 1]

I Kingman’s coalescent, Λ = δ0



The spatial Λ-Fleming-Viot process Barton - E - Véber and friends

State {ρ(t, x, ·) ∈M1(K), x ∈ R2, t ≥ 0}.

Π Poisson point
process rate dt⊗ dx⊗ ξ(dr, du) on [0,∞)× R2 × [0,∞)× [0, 1].

Dynamics: for each (t, x, r, u) ∈ Π,

I z ∼ U(Br(x))

I k ∼ ρ(t−, z, ·).

For all y ∈ Br(x),

ρ(t, y, ·) = (1− u)ρ(t−, y, ·) + uδk.
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State {ρ(t, x, ·) ∈M1(K), x ∈ R2, t ≥ 0}. Π Poisson point
process rate dt⊗ dx⊗ ξ(dr, du) on [0,∞)× R2 × [0,∞)× [0, 1].

Dynamics: for each (t, x, r, u) ∈ Π,

I z ∼ U(Br(x))

I k ∼ ρ(t−, z, ·).

For all y ∈ Br(x),

ρ(t, y, ·) = (1− u)ρ(t−, y, ·) + uδk.

r

x

r

x

z

r

x

z



The spatial Λ-Fleming-Viot process Barton - E - Véber and friends
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Backwards in time

I A single ancestral lineage evolves in series of jumps with
intensity

dt⊗
∫

(|x|/2,∞)

∫
[0,1]

Lr(x)

πr2
u ξ(dr, du)dx

on R+ × R2 where Lr(x) = |Br(0) ∩Br(x)|.

I Lineages can coalesce when hit by
same ‘event’.

Note: If ξ(dr, du) = µ(dr)⊗ δu, rate of
jumps ∝ u.
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Duality

Suppose K = {a,A}. Define w(t, x) = ρ(t, x, {a}) to be the
proportion of the population at site x at time t that are of type a.

(Only really defined up to a set of Lebesgue measure zero)

I Sample N0 individuals from locations {Xi(0)}N0
i=1 from the

present day population;
I Let {Xi(t)}Nt

i=1 denote the positions of the random number of
individuals ancestral to the sample at time t before the present

E

[
N0∏
i=1

w
(
t,Xi(0)

)]
= E

[
Nt∏
i=1

w
(
0, Xi(t)

)]
.

(actually have to sample from random positions and integrate to
circumvent issues with sets of Lebesgue measure zero)

Direct analogue of our duality in the stepping stone model



Duality

Suppose K = {a,A}. Define w(t, x) = ρ(t, x, {a}) to be the
proportion of the population at site x at time t that are of type a.

(Only really defined up to a set of Lebesgue measure zero)

I Sample N0 individuals from locations {Xi(0)}N0
i=1 from the

present day population;
I Let {Xi(t)}Nt

i=1 denote the positions of the random number of
individuals ancestral to the sample at time t before the present

E

[
N0∏
i=1

w
(
t,Xi(0)

)]
= E

[
Nt∏
i=1

w
(
0, Xi(t)

)]
.

(actually have to sample from random positions and integrate to
circumvent issues with sets of Lebesgue measure zero)

Direct analogue of our duality in the stepping stone model



Duality

Suppose K = {a,A}. Define w(t, x) = ρ(t, x, {a}) to be the
proportion of the population at site x at time t that are of type a.

(Only really defined up to a set of Lebesgue measure zero)

I Sample N0 individuals from locations {Xi(0)}N0
i=1 from the

present day population;
I Let {Xi(t)}Nt

i=1 denote the positions of the random number of
individuals ancestral to the sample at time t before the present

E

[
N0∏
i=1

w
(
t,Xi(0)

)]
= E

[
Nt∏
i=1

w
(
0, Xi(t)

)]
.

(actually have to sample from random positions and integrate to
circumvent issues with sets of Lebesgue measure zero)

Direct analogue of our duality in the stepping stone model



Duality

Suppose K = {a,A}. Define w(t, x) = ρ(t, x, {a}) to be the
proportion of the population at site x at time t that are of type a.

(Only really defined up to a set of Lebesgue measure zero)

I Sample N0 individuals from locations {Xi(0)}N0
i=1 from the

present day population;
I Let {Xi(t)}Nt

i=1 denote the positions of the random number of
individuals ancestral to the sample at time t before the present

E

[
N0∏
i=1

w
(
t,Xi(0)

)]
= E

[
Nt∏
i=1

w
(
0, Xi(t)

)]
.

(actually have to sample from random positions and integrate to
circumvent issues with sets of Lebesgue measure zero)

Direct analogue of our duality in the stepping stone model



Duality

Suppose K = {a,A}. Define w(t, x) = ρ(t, x, {a}) to be the
proportion of the population at site x at time t that are of type a.

(Only really defined up to a set of Lebesgue measure zero)

I Sample N0 individuals from locations {Xi(0)}N0
i=1 from the

present day population;
I Let {Xi(t)}Nt

i=1 denote the positions of the random number of
individuals ancestral to the sample at time t before the present

E

[
N0∏
i=1

w
(
t,Xi(0)

)]
= E

[
Nt∏
i=1

w
(
0, Xi(t)

)]
.

(actually have to sample from random positions and integrate to
circumvent issues with sets of Lebesgue measure zero)

Direct analogue of our duality in the stepping stone model



A framework for modelling

I Different spaces,

I Different shapes of event,

I Non-uniform replacement,

I Non-constant density,

I Multiple parents,

I Selection,

I Recombination,

Robust results? ; Scaling limits.
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Example: Wright and Malécot again

Evol, Volume 64, Issue 9, 1 September 2010, Pages 2701–2715, https://doi.org/10.1111/j.1558-5646.2010.01019.x

The content of this slide may be subject to copyright: please see the slide notes for details.

The effect of mixed events on F(x, μ). A mixture of rare large events 

and frequent small events



Recap: The Wright-Fisher model with selection

Two types a, A, relative fitnesses
a A

1− s 1

During reproduction, each individual produces large number of
juveniles from which next generation sampled.

If proportion A-alleles in parental population is q, proportion in
pool of juveniles is

q∗ =
q

1− s(1− q)
≈ q + sq(1− q).

Population size N (fixed).



Establishment of a favourable allele (Fisher 1930)

While rare, No. offspring of a favoured individual
∼ Binom(N, (1 + s)/N) ≈ Poiss(1 + s).

Branching process approximation: probability extinction satisfies

x = exp(−(1 + s)(1− x)),

Survival probability, y = 1− x,

y = 1− exp(−(1 + s)y) = (1 + s)y − 1

2
(1 + s)2y2 +O(y3).

Rearranging:

1

2
(1 + s)2y2 = sy =⇒ y ≈ 2s.



Does space matter?

Maryuama (1970),

I subdivided population, demes (large) constant size;

I selection acts independently in each deme;

I contribution of each deme to next generation proportional to
size.

; Fixation probability independent of population subdivision.

Barton (1993), this is no longer true if one adds
extinction-recolonisation events to colonies.

Aim to investigate the interaction of natural selection and spatial
structure in the framework of the spatial Lambda-Fleming-Viot
process.
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Introducing selection to the SLFV

WARNING: There are lots of ways to do this.

Here we mimic what we did for the Wright-Fisher/Moran models
in the first lecture.



Introducing selection to the SLFV

K = {a,A}, w(t, x) = ρ(t, x, a) proportion of type a

I (i) Two types, a, A. Weight type a by (1− s). If a
reproduction event affects a region B(x, r) in which current
proportion of a-alleles is w, then probability offspring are type
a is

(1− s)w
1− sw

= w(1− s) + sw2 +O(s2).

I (ii) Neutral events rate ∝ (1− s), selective events rate ∝ s.
At selective reproduction events, sample two potential parents.
If types aa, then an a reproduces, otherwise an A does.

c.f. what we did for Moran model
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(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

I lineages evolve in a series of jumps;

I they can coalesce when covered by same event.

At selective events

I Two ‘potential’ parents must be
traced;

I Lineages can coalesce when hit by
same ‘event’.

x

r

A sampled individual is type a iff all lineages in the corresponding
ASG are type a at any previous time.
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Zooming out: recovering classical models

The spread of a favoured allele is classically modelled through the
(stochastic) Fisher-KPP equation:

du =
(1

2
∆u+ su(1− u)

)
dt+1d=1ε

√
u(1− u)W (dt, dx).

Over sufficiently large spatial and temporal scales, does the
proportion of favoured alleles in the SLFV with selection look like a
solution to the (stochastic) Fisher-KPP equation?

Key tool: ancestral selection graph.

Stochastic Fisher-KPP is dual to branching and coalescing
Brownian motion
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Branching Brownian motion and the Fisher-KPP equation

Binary branching BM Xt = {X1
t , . . . , X

Nt
t }

I Individuals follow independent Brownian motions

I Individual lifetime Exp(s)

I Replaced (at location where die) by two offspring

w(t, x) = Ex
[ Nt∏
i=1

w(0, Xi
t)
]
,

∂w

∂t
=

1

2
∆w + s(w2 − w)

S ∼ Exp(s)= lifetime ancestor started at x, h� 1,

Ex
[Nt+h∏
i=1

w(0, Xi
t+h)

]
= Ex

[Nt+h∏
i=1

w(0, Xi
t+h)

∣∣S < h
]
P[S < h]

+Ex
[Nt+h∏
i=1

w(0, Xi
t+h)

∣∣S > h
]
P[S > h]
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w(t, x)2 − w(t, x)

)
=

1

2
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(
w(t, x)− 1

)
u(t, x) = 1− w(t, x) solves ∂u

∂t = 1
2∆u+ su(1− u)
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Convergence of SLFV with selection

I SLFV dual to system of branching and coalescing random
walks

I Fisher-KPP equation dual to binary branching Brownian
motion

Recall Wright-Fisher diffusion (genetic drift) dual to Kingman
coalescent
In spatial setting, Wright-Fisher noise reflected in coalescence in
dual - lineages coalesce at rate determined by local time they
spend together, but only makes sense in d = 1

To identify convergence to (stochastic) Fisher-KPP, show
convergence of the dual processes
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Brief aside on random walk

Suppose X is simple random walk on Z.

Write τ for hitting time of {0, N}

Take X0 = 1. Doob’s Optional Stopping Theorem says
E[Xτ ] = X0.

Thus P[Xτ = N ] = 1/N .

So number of excursions away from zero before one reaches N is
Geometric with mean N .

In d = 2, corresponding quantity has mean ∝ logN .
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Reminder: parameters in SLFV with selection

I Events driven by Poisson Point Process Π that specifies
I centre and radius event
I impact event

I selection coefficient determines proportion of selective events

For simplicity suppose r, u, s fixed

Dual lineages make jumps of length O(r) at rate proportional to
urd, and branch at rate proportional to surd

lineages can only coalesce when at separation less than 4r
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Scaling limits I: High neighbourhood size

Set un = u/nγ , sn = s/nδ, w(n)(t, x) = w(nt, nβx),
Jump rate nun, jump size 1/nβ. Diffusive scaling: 2β = 1− γ

I At ‘branching’ event, two lineages at separation O(1/nβ).

I Probability separate to O(1) before come back together is
O(1/nβ), (d = 1); O(1/ log n), (d = 2); O(1), (d ≥ 3).

I If two lineages hit by same event, given one jumps, they
coalesce with probability O(1/nγ).

d ≥ 2: Probability ‘long’ excursion before coalesce O(1);

d = 1: Number attempts to reach separation O(1)
∼ number of attempts to coalesce: β = γ;

Selection events rate nunsn O(1): 1− γ − δ = 0.
; β = γ = 1/3, δ = 2/3.



Scaling limits I: High neighbourhood size

Fixed impact u and event radius r, selection coefficient s

I Set un = u/n1/3, sn = s/n2/3, w(n)(t, x) = w(nt, n1/3x),

dw =
1

2
∆wdt+ sw(1− w)dt+ 1d=1ε

√
w(1− w)W (dt, dx)

E. Véber, Yu.

Here, un → 0, corresponding to high neighbourhood size.

γ > β (even bigger neighbourhood size) ; deterministic equation
in all dimensions
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